Ethylene Inhibitors Restore Nodulation to sym 5 Mutants of Pisum sativum L. cv Sparkle.
نویسندگان
چکیده
The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20 degrees C. If inhibitors of ethylene formation or action (Co(2+), aminoethoxyvinylglycine, or Ag(+)) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore nodulation. When Ag(+) is added to the substrate from 4 days before to 4 days after inoculation with rhizobia, nodulation of sym 5 mutants is increased. The roots of the mutant need only be exposed to Ag(+) for 4 hours to significantly increase nodule numbers. The content of free 1-aminocyclopropane-1-carboxylic acid and the production of ethylene in the lateral roots of sym 5 mutants do not differ from Sparkle.
منابع مشابه
Pleiotropic Effects of sym-17 : A Mutation in Pisum sativum L. cv Sparkle Causes Decreased Nodulation, Altered Root and Shoot Growth, and Increased Ethylene Production.
R82 (sym-17), a stable mutant of Pisum sativum L. cv Sparkle, is described. The shoot growth of the mutant was less than that of its parent under light or dark growth conditions. Gibberellic acid treatment did not normalize the shoot growth of R82. The mutant had thick and short roots. It formed few nodules, but the specific nitrogenase activity was not affected. R82 produced and contained more...
متن کاملRhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. T...
متن کاملLight Microscopy Study of Nodule Initiation in Pisum sativum L. cv Sparkle and in Its Low-Nodulating Mutant E2 (sym 5).
We compared nodule initiation in lateral roots of Pisum sativum (L.) cv Sparkle and in a low-nodulating mutant E2 (sym 5). In Sparkle, about 25% of the infections terminated in the epidermis, a similar number stopped in the cortex, and 50% resulted in the formation of a nodule meristem or an emerged nodule. The mutant E2 (sym 5) was infected as often as was the parent, and it formed a normal in...
متن کاملInteractions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.
The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, con...
متن کاملPhysiological Characterization of a Single-Gene Mutant of Pisum sativum Exhibiting Excess Iron Accumulation: I. Root Iron Reduction and Iron Uptake.
Root systems of mutant (E107) and parental (cv ;Sparkle') Pisum sativum genotypes were studied to determine the basis for excess Fe accumulation in E107. Plants were grown with (+Fe-treated) or without (-Fe-treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)glycine] in aerated nutrient solutions. Daily measurements of Fe(III) reduction indicated a four-to seven-fold higher reduction rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 96 1 شماره
صفحات -
تاریخ انتشار 1991